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Abstract

Identification of diseased kidney glomeruli and fibrotic
regions remains subjective and time-consuming due to com-
plete dependence on an expert kidney pathologist. In an
attempt to automate the classification of glomeruli into nor-
mal and abnormal morphology and classification of fibrosis
patches into mild, moderate and severe categories, we in-
vestigate three deep learning techniques: traditional trans-
fer learning, pre-trained deep neural networks for feature
extraction followed by supervised classification, and a novel
Multi-Gaze Attention Network (MGANet) that uses multi-
headed self-attention through parallel residual skip con-
nections in a CNN architecture. Empirically, while the
transfer learning models such as ResNet50, InceptionRes-
NetV2,VGGI19 and InceptionV3 acutely under-perform in
the classification tasks, the Logistic Regression model aug-
mented with features extracted from the InceptionResNetV2
shows promising results. Additionally, the experiments ef-
fectively ascertain that the proposed MGANet architecture
outperforms both the former baseline techniques to estab-
lish the state of the art accuracy of 87.25% and 81.47%
for glomeruli and fibrosis classification, respectively on
the Renal Glomeruli Fibrosis Histopathological (RGFH)
database.

1. Introduction

A kidney tissue comprises of multiple functioning units
called nephrons, which are comprised of glomeruli and
tubules. The area in-between the tubules is known as the
interstitium. Glomeruli are the principal filtering units of a
kidney and most of the renal diseases affect the glomeru-
lar segments [14]. Glomeruli exhibit high variability in
terms of size, shape, and color, even in the same tissue sam-
ple. This is fundamentally due to their relative position and
alignment, heterogeneity in staining and genetic biological
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processes. Generally, glomeruli are spherical in shape and
may be distorted in disease conditions, e.g., hypertension
and diabetes. Any change in the shape, cellularity, size or
structure of the glomeruli might act as one of the early indi-
cators of kidney diseases.
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Figure 1: Features of kidney tissues identified by a
nephropathologist

A glomerulus is marked as abnormal if there is a de-
viation from normal morphology and staining characteris-
tics [30]. Figure 1 shows the basic parts of a kidney tis-
sue and an annotated glomerulus. A normal and healthy
glomerulus shows no expansion of mesangial matrix and
cellularity. The glomerular capillary loops are patent and
the glomerular basement membranes appear to be of nor-
mal thickness. There is no proliferation in the Bowman
space!, no necrosis is seen and glomerular tuft is not ad-

I'Sack like structure in the kidneys that performs blood filtration.



hered to the Bowman capsule. An abnormal glomerulus
represents a departure from normal histology in terms of
sclerosis (stiffening of the glomerulus caused due to the re-
placement of the original tissues by connective tissue), a
proliferation of glomerular capillaries and endothelial cells,
infiltrating leukocytes and obliteration of capillary spaces.

Diseased glomeruli form a scar upon healing, called fi-
brosis, similar to a wound healing on the skin after a cut fol-
lowed by replacement of normal skin. In kidneys, fibrosis
replaces the functioning nephrons and these scarred tissues
do not contribute to the functioning of a nephron. There-
fore, nephrons once damaged cannot be replicated, making
the scar tissue or the damage to the kidney irreversible. The
frequency of diseased glomeruli and extent of renal fibrosis
act as hallmarks of the underlying progression of chronic
kidney disease (CKD), and the medical prognosis. Diag-
nosing kidney health from kidney biopsies is very subjective
and requires the presence of an expert to provide a proper
diagnosis. Therefore, we aim to automate the diagnosis on
kidney biopsy by using different deep learning based tech-
niques, so as to alleviate this dependence on the presence of
an expert and also make the process more objective. As a
preliminary step in this direction, we accomplish the clas-
sification of renal glomeruli into two fundamental classes:
normal and abnormal. Detecting the presence of abnormal
glomeruli in the renal tissue slide is the most basic step that
a pathologist performs to decide whether the tissue is af-
fected or healthy. Alongside, the work explores the iden-
tification of patches of fibrotic renal biopsy into three el-
ementary classes: mild, moderate and severe to determine
the progression of renal disease.

Transfer learning models, ResNet50, InceptionV3, In-
ceptionResNetV2 and VGG19 have been engaged in our
work as baselines similar to the earlier work in glomureli
classification [3]. Secondary supervised classifiers used in
this study are Logistic Regression (LOGREG) [2], Random
Forest (RF) [6] and Naive Bayes (NB) [40]. Each of these
classifiers takes the feature vectors of the image data as the
input that is extracted from the deepest layers of the respec-
tive pre-trained image classification models- ResNet50, In-
ceptionV3, InceptionResNetV2, and VGG19 by convolut-
ing the native image RGB descriptors with the weights of
the last layers of individual architectures. The respective
pre-trained architectures, when used as feature extractors,
are referred to as IRFE (InceptionResNetV2 Feature Extrac-
tor), IFE (InceptionV3 Feature Extractor), RFE (ResNet50
Feature Extractor) and VFE (VGG19 Feature Extractor)
throughout the paper. Lastly, we introduce a self attention
based neural architecture, known as Multi-Gaze Attention
Network (MGANet). The main contributions of this study
can be summarized as follows:

* Creation of Renal Glomeruli Fibrosis Histopathology
database (RGFH) consisting of two datasets: Renal

Glomeruli Dataset (RGD) and Renal Fibrosis Dataset
(RFD). The dataset images have been collected from
whole slide images(WSIs) or static images taken by
multiple in-house experts and then verified by our ex-
pert kidney pathologist.

» Experimentation to ascertain the applicability of sim-
ple transfer learning using ResNet50, InceptionV3, In-
ceptionResNetV2 and VGG19 models.

» Experimentation to analyze the performance of su-
pervised secondary classifiers including Logistic Re-
gression, Random Forest and Naive Bayes that use
weighted image feature vectors from pre-trained trans-
fer learning architectures such as ResNet50, Incep-
tionV3, InceptionResNetV2 and VGG19 architectures
as inputs.

Investigation of the proposed MGANet for classifica-
tion of glomeruli and fibrotic images. We incorporate
scaled dot product attention and draw a comparison of
the relative arrangement of input attention maps for op-
timal performance. We also try to figure out the most
promising deep neural network that provides optimal
performance on classification tasks.

The rest of the paper is organized as follows. The impor-
tant related work is reported in Section 2 followed by de-
tailed discussion of RGFH database in Section 3. Section 4
introduces the proposed methodology. The experimental re-
sults and comparison with the state-of-the-art methods are
mentioned in Section 5 and comprehensive error analysis
is reported in Section 6. Finally, Section 7 concludes and
suggests future work.

2. Related Work

Simple supervised classification techniques involving
SVM [19] and Gradient Boosting Decision Tree [27] have
been successful on textual data but not so much in the do-
main of image classification. On the other hand, deep learn-
ing paradigms take advantage of the massive amount of
training data in conjugation with their inherent neural ar-
chitecture to investigate the data complexities without an
auxiliary understanding of the nuances of the medical field.
Shin et al. [32] gave a descriptive explanation of the appli-
cations of transfer learning from pre-trained ImageNet [10]
based frameworks to an allied image corpus. A detailed
mathematical analysis of feature extractors was put forth
by [37], that inspected the idea of feeding characteristic fea-
tures of the signals to improve classification performance.
ResFeats put forth by Mahmood et al. [17] portrayed the
usefulness of pre-trained ResNet based feature extractor
over multiple datasets as a remarkable improvement in ob-
ject classification, scene classification and coral classifica-



tion tasks. Deep cascaded networks were employed on rou-
tine HE stained tissues to detect mitosis in breast cancer
tissues Chen er al. [8]. Locality sensitive deep neural net-
work frameworks have also been utilized for automatically
detecting and classifying individual nuclei in colon histol-
ogy images [33]. Convergent approaches have been tried
earlier to combine domain inspired features with CNN’s to
detect mitosis, thereby reducing the excessive dependency
on large datasets and associated intuition on deep learning
frameworks [36]. Regions of prostate cancer were then clas-
sified via boosted Bayesian multi-resolution classifier fol-
lowed by applying Gabor filter features using an AdaBoost
ensemble method [11].

3. Renal Glomeruli-Fibrosis Histopathological
(RGFH) Database

The RGFH database comprises two datasets: Renal
Glomeruli Dataset (RGD) and Renal Fibrosis Dataset
(RFD). RGD consists of glomeruli images partitioned into
normal and abnormal classes. RFD dataset consists of kid-
ney tissue images partitioned into mild fibrosis, moderate
fibrosis and severe fibrosis classes. The constituent de-
identified images of both the datasets have been sourced
from Arkana Laboratories’ after seeking prior approval
from the ethics committee to avoid privacy concerns and
following patient anonymity rules.

3.1. Database Acquisition

The de-identified biopsy images, similar to Figure 1 were
procured between January 2018 to July 2018. The kid-
ney tissues have been extracted through needle biopsies and
were processed and stained according to published stan-
dards [9]. The tissue samples were digitized using Mo-
ticEasyScan® at 20X (0.5 micron/pixel). The images are
obtained in TIFF-based SVS format that was converted into
JPEG format. The scanner was equipped with 15 fps 2/3”
CCD sensor and comes fitted with CCIS Infinity optics for
reliable, fast and efficient work in cytology, histology and
cytopathology. The static images of glomeruli and tissue
patches were captured using the Olympus camera. The dig-
itized biopsy images consist of an amalgamation of several
renal substructures such as interstitial tissue, tubules, blood
vessels and glomeruli [15] at 20X and 40X. Images having
insufficient staining, poor light intensity and fragmented tis-
sue portions were not included in the dataset.

3.2. Database Preparation

RGD consists of independent sections of segmented
glomeruli taken from static images of kidney biopsies
at a uniform 40x magnification. The procured patches
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of glomeruli were subjected to further filtering where
glomeruli images with missing borders, insufficient stain-
ing, poor light intensity and fragmented glomeruli portions
were removed. The content and quality of the remaining
images were verified to have adequate pixel intensity, con-
trast and minimal blurring.

The presence of heterogeneous substructures and multi-
ple tissue constructs in a particular WSI compound the task
of identifying the fibrotic region in the tissues for the RFD
dataset. As a result, assigning the fibrosis label becomes
a complex process. The whole slide images were broken
down into an array of a large number of rectangular win-
dows, each referred to as a patch. While extracting the re-
nal tissue patches, each of the patches was so chosen to have
less than 10% non-tissue region.

(a) Abnormal glomerulus (b) Normal glomerulus

Figure 2: Examples of RGD for each class

(a) Mild

(b) Moderate (c) Severe

Figure 3: Examples from RFD for each class

3.3. Database Statistics

RGD is a dataset of 935 images of renal glomeruli ob-
tained from human renal biopsies. The dataset has been
constructed to have 619 abnormal and 316 normal images
for the respective class labels (see Figure 2). An impor-
tant characteristic feature of the dataset provided is the use
of multiple stains that resembles standard clinical practice
along with the presence of subtle non-uniformity in the
degree of staining which emphasizes the natural unavoid-
able variations in biopsy processing throughout the medical
world.

RFD dataset follows an annotation schema wherein the
entire dataset of 927 images is formulated into three classes
based on the extent of regional scarring: (i) mild (5 — 25%),
(i1) moderate (26 — 50%) and (iii) severe (more than 50%).
The dataset contains 356 samples of mild fibrosis, 198 sam-
ples of moderate fibrosis and 373 samples of severe fibrosis
(see Figure 3). Tables 1 and 2 describe the distribution of
the classes in each dataset.



Label Count
Label Count -
Mild 356
Abnormal 619
Moderate 198
Normal 316
Total 035 Severe 373
Total 927

Table 1: Image label dis-

tribution in RGD Table 2: Image label dis-

tribution in RFD

3.4. Database Annotation Protocol

As per the sourcing laboratory, all the tissue samples
and their annotations meet the medical standards set by
responsible accreditation bodies and were cross-annotated
by multiple pathologists during the real-time patient-testing
phase to ascertain their credibility in clinical diagnosis. The
RGFH database was extracted from a pool of archived re-
nal WSIs or static images data available with the labora-
tory. The expert kidney pathologist responsible for the
verification of the image annotations, having an extensive
background in kidney pathology, verified those images and
their corresponding annotations made by multiple in-house
pathologists on real-world medical cases. In this way, the
images were exposed to another round of scrutiny and fac-
tual validation, diminishing any chance of incorrect annota-
tions. At each step, the dataset was subjected to due medical
diligence [35] in consensus with the kidney pathologist.

4. Methodology

The following section is divided into four parts: Section
4.1 describes the pre-processing steps applied to images in
the RGFH database, followed by Section 4.2 and 4.3 which
highlight the transfer learning and supervised classification
with DNN feature extraction respectively. Finally, Section
4.4 covers the discussion on the proposed Multi-Gaze At-
tention Network(MGANet) model.

4.1. Data Pre-processing

To keep the model invariant to fine changes in image
quality, we perform certain pre-processing steps like his-
togram equalization for enhancement of image contrast.
Contrast-Limited Adaptive Histogram Equalizer (CLAHE)
[25] was used for pre-processing both RGD and RFD
dataset. Realizing the problems associated with the small
size of the proposed database, data augmentation techniques
were applied to handle data inadequacy, data imbalance and
lack of uniform modalities across the datasets. Along with
data warping and synthetic oversampling [38], elastic defor-
mations were also employed to generate plausible transfor-
mations of existing samples without distorting the original
label information. Table 3 lists all the techniques used.

Parameter Value
Horizontal Flip True
Vertical Flip True
Fill Mode Nearest
Zoom Range 0.1

Width Shift Range 0.2
Height Shift Range 0.2
Rotational Range 180

Table 3: Data augmentation parameters

4.2. Transfer Learning

Training a CNN directly from scratch requires signifi-
cantly greater time and training data [21]. Alternatively,
fine-tuning the pre-trained models in case of similar base
and target data remarkably enhances the generalization per-
formance of the classifier [39]. Esteva et al. [12] demon-
strated the classification of skin lesions using a single CNN,
trained end-to-end from images directly, using only pixels
and disease labels as inputs to InceptionV3. Inspired by
the same, we explored several transfer learning architec-
tures such as ResNet50, InceptionV3, InceptionResnet and
VGG19 models initialized with corresponding ImageNet
weights. As depicted in Figure 4, the models are re-trained
by freezing the weights of all trainable layers except the last
three dense fully-connected layers. The activation function
applied is ReLU [16] for the second and third last dense
layers followed by ‘Softmax’in the last dense layer.

Let domain D consist of two components: a feature
space X and a marginal probability distribution P(X). z;
represents the input image and y; represents the output label
corresponding to the sample image from the RGFH dataset.
Z represents the pre-trained weights of ImageNet classifica-
tion. Transfer learning framework 7', mathematically out-
puts a predicted label space through the transfer function
f, which is retrained on the data pairs of (z;,y;) as shown
in Equation (1). It takes in the tuples of the image and la-
bel along with pre-initialized layer weights and the output
vector of class probabilities in the form of Y is shown in
Equation (2), where each class label is distinctly referred to
as a, ...

szage = f(Z, l’myz) (1)

Y; = {P*(T(2)), PP(T(x)) ...} )

The batch-size and epochs were chosen by grid search
in the range of (8-128) and (20-100) in equal spaced in-
tervals through 5-fold cross-validation for optimal perfor-
mance. The final models had a batch size of 16 and were
trained for 30 epochs. The loss function was chosen as cat-
egorical cross-entropy with the Adam optimizer and L2 nor-
malization.
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4.3. Supervised Classification with DNN Feature
Extraction

The features extracted at the deeper layers of the CNN
usually correspond to the subtle intricacies and are char-
acteristic of medical image datasets. These features are
predominantly difficult to detect through regular image de-
scriptors as the images show minute variations across the
spectrum of the dataset. On the other hand, the first few
layers contain generic features resembling Gabor filters or
blob features [39].

The activations of the fully connected (FC) layers cap-
ture the overall tissue level substructures, while the last out-
put layer preserves the spatial information representing par-
ticular classes in datasets. The loss of local spatial infor-
mation such as the several substructures of the biopsy tis-
sue during propagation through the fully connected layers,
which explains the reasoning behind reusing a pre-trained
DNN as a feature extractor, instead of using it directly as a
classifier [22].

Also, features obtained through last layers of pre-
trained CNN outperform SIFT and HOG image descrip-
tors [24]. Thus, there exists a possibility to investigate sim-
ilar methodologies to exploit supervised classification by
Logistic Regression, Naive Bayes and Random Forest re-
spectively on pre-trained networks adopted for the feature
extraction in our work including InceptionV3, Inception-
ResNet, ResNet50 and VGG19 in manner similar to that
illustrated in Figure 5. The proposed strategy starts with ex-
traction of last level feature vectors from a pre-trained CNN
model followed by matrix multiplying the obtained weights
with image vectors to form image specific feature vectors.
The output of the feature extractor is generally of the form
w * h x d where w is the width, h is the height and d is the
number of channels in the convolutional layers. These 2D
arrays of d dimension are flattened and trained on Logistic
Regression, Naive Bayes and Random Forest models with
the image feature vectors as an input.

Histogram e Image
t Equalization | y»Extract Features—=£ —»M| Classifier —» Class
5 Prediction

The complete proposed strategy can be understood by
the following mathematical description. Let us assume X
as the sample space of all input training data from RGFH.
The input-output pairs of image and the corresponding label
are represented as (z;,y;). P(X) is the probability func-
tion of the output labels. As per Equation (3), the image
vector of a sample image p(x;) is convoluted (\) with the
last layer weights of the pre-trained model Z to give the
transformed input (v) for the secondary classifier. The sec-
ondary supervised classifier g is trained with modified in-
put image v(z;) and the corresponding label y; by passing
through the supervised classifier as shown in Equation (4).
Equation (5) demonstrates that the output label space Y is a
vector of probabilities of distinct label classes (a, 5. ..) ob-
tained when the trained classifier C is tested on the image
samples.

v(xi) = NZ, p(x:)) 3)
Oimage = g(’j(xi)u y7)) “)
Y; = {P"(C(x:)), PP(C(x)) ...} )

The final layers Z of pre-trained models from which the fea-
ture weights were extracted are given in Table 4. The hyper-
parameters for random forest classifier were fine-tuned us-
ing 10-fold cross-validation and the results were found to
be optimal when n_estimators, max_depth and max _features
were fixed at 1000, 15 and log2 respectively.

Pre-trained architecture Layer
IRFE CONV_7B
IFE MIXEDI10
RFE AVG_POOL
VFE FC1

Table 4: Layers contributing to image feature weights.

4.4. Multi-Gaze Attention Network (MGANet)

In bio-medical image classification, tissue level discrim-
inating features are generally localized rather than being
present in the entirety of the image. Pre-trained deep learn-
ing models are unable to prioritize features extracted from
relevant local patches, thereby focusing on global pixel
level information. Figure 1 highlights the intuitive hand-
crafted features used by clinicians to derive disease progno-
sis. The problem can be effectively handled by extracting
handcrafted features from corresponding biopsy images but
the subjectivity involved in process outweighs the benefit



of feature interpretability. Alternatively, an unsupervised
feature generation approach of attention based deep learn-
ing strategies [23] can facilitate seamless domain adaption,
irrespective of the fundamental disease characterization of
the image.
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Figure 6: Framework of MGANet. (32, 64 and 192 are the
sizes of the Conv2D of respective Covnets)

Figure 6 portrays the proposed MGANet consisting of
three ConvNets, each composed of a Convolutional 2D
layer with ReLu activation followed by a maxpooling layer
having a stride of 2 units. Further, three corresponding
attention maps are generated over the whole slide image
through residual skip connections from the initial ConvNet
layers in parallel. Each of the three attention maps is ap-
pended and their scaled dot product is computed. The
scaled dot product of feature maps is preferred over addi-
tive and simple attention due to its space-efficiency [7]. It
allows the model to jointly attend to information from dif-
ferent representation sub-spaces at different positions. Each
attention map is treated as an [ « ! matrix of blocks such that
each block is of dimension d * ¢, where d represents the
output dimension of the last convolutional layer and c rep-
resents the number of input color channels (RGB, i.e., 3 in
our case). Each block of attention map is passed through a
fully connected dense layer and the output obtained is re-
shaped to dimension d,, * n,,, where d,, and n,, represent the
dimension of the linear space the input is to be projected and
the number of projections for each block respectively. This
gives rise to multi-headed self-attention within the attention

maps inspired by [34]. A triplet of the three distinct atten-
tion maps, a1, az and as, is then passed through the scaled
dot product function where the scaled product of vectors
a1 and ag is passed to get the Softmax over vector as, as
shown in Equation (6). The permutation of the attention
maps {a1, az, ag} is manipulated to derive the best possible
experimental configuration. The resulting output is layer
normalized [4] to make the tensor have a standard normal
distribution by deleting some dimensions of the vector that
are not important. This can be viewed as another smaller at-
tention in itself at the normalization stage. The final output
is then flattened and passed through two consecutive dense
fully connected layers with activation functions ReLU and
Softmax respectively.

Softmazx(ay,as) * as

(6)

Attention(ay, as,a3) =
mazx(ay, as)

5. Results and Discussions

Dataset Resnet50 | IV3 IRV2 | VGG19
Acc 72.35 68.56 | 64.75 | 69.89

RGD Prec 74.56 71.35 | 60.12 | 66.59
Recall | 72.56 68.92 | 65.81 | 68.71
F1 72.97 69.01 | 5541 | 64.90
Acc 66.87 5247 | 53.64 | 64.74

RFD Prec 51.40 41.38 | 42.69 | 53.15
Recall | 62.12 50.67 | 51.21 | 61.72
Fl 60.25 48.76 | 42.81 | 59.83

Table 5: Results (in %) for transfer learning model. (IV3:
InceptionV3, IRV2: InceptionResnetV2, Acc: Accuracy,
Prec: Precision)

Table 5 reports the results of transfer learning methodol-
ogy as discussed in Section 4.2. Experimental results were
obtained by using weighted metrics in each case as the class
imbalance may skew the model performance to unilaterally
favor the dominant class. The models in each case were
trained with stratified K-fold cross-validation with K=5, for
parameter tuning to further account for class imbalance.
The preliminary results gathered from transfer learning
models aim to serve as a baseline for classification for fea-
tures extraction from pre-trained DNN and MGANet. The
results derived from both the datasets seems to support our
hypothesis that transfer learning models unexpectedly suf-
fer from misclassification due to high congruity and intri-
cate variations in biopsy image. Amongst ResNet50, Incep-
tionResNetV2,InceptionV3 and VGG19, ResNet50 clearly
outperforms contemporary pre-trained models significantly
due to the presence of shortcut connections known as resid-
ual networks in its architecture. ResNet50 architecture
records the best accuracy of 72.35% and 66.87% on RGD
and RFD datasets respectively and a similar trend is preva-
lent across other metric measurements too.



Classifiers Acc Prec | Recall F1

LogReg 85.23 | 85.64 | 86.03 85.08
IRFE | Random Forest | 80.74 | 83.08 | 76.74 78.11
Naive Bayes 72.19 | 74.80 | 72.89 72.94
LogReg 81.63 | 82.53 | 78.63 80.35
IFE Random Forest | 80.21 | 84.76 | 74.21 77.38
Naive Bayes 75.42 | 75.40 | 75.40 75.40
LogReg 83.42 | 83.16 | 83.42 83.07
RFE Random Forest | 8249 | 82.74 | 84.49 83.41
Naive Bayes 6791 | 71.39 | 6791 68.73
LogReg 83.16 | 83.02 | 84.16 83.99
VFE | Random Forest | 83.70 | 82.62 | 81.70 82.14
Naive Bayes 60.42 | 7439 | 60.42 60.99

Table 6: Results (in %) of supervised classification with
pre-trained feature extractor for RGD (LogReg: Logistic
Regression, Acc: Accuracy, Prec: Precision).

Classifiers Acc Prec | Recall F1

LogReg 71.51 | 59.74 | 68.51 69.96
IRFE | Random Forest | 66.45 | 43.95 | 56.45 59.34
Naive Bayes 54.62 | 44.97 | 44.62 54.71
LogReg 64.81 | 60.89 | 64.81 64.38
IFE Random Forest | 59.67 | 56.61 | 59.62 56.82
Naive Bayes 61.82 | 50.09 | 61.81 55.15
LogReg 58.06 | 51.33 | 58.06 53.89
RFE | Random Forest | 58.06 | 61.31 | 58.06 52.62
Naive Bayes 53.09 | 43.64 | 37.09 38.82
LogReg 69.74 | 66.89 | 67.74 67.10
VEE | Random Forest | 67.21 | 56.01 | 60.21 55.31
Naive Bayes 60.53 | 53.53 | 50.53 51.44

Table 7: Results (in %) of supervised classification with
pre-trained feature extractor for RFD (LogReg: Logistic
Regression, Acc: Accuracy, Prec: Precision).
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Figure 7: t-SNE plots for (a) RGD and (b) RFD

Feature extraction based supervised classification was
tested on both the datasets and the corresponding results
were compiled in Tables 6 and 7. The findings give plau-
sible credibility to our proposition to use a CNN-based fea-
ture extraction as a preliminary step for the WSI classifica-
tion of RGD and RFD datasets. Out of multiple pre-trained
models used on different classifiers, the Logistic Regres-
sion supplemented with features imparted by InceptionRes-
NetV2 is most successful in terms of accuracy, recall and

F1 score. A general inference is that the feature extrac-
tion based classifiers showed an improvement in contrast
to transfer learning based methods. Among contemporary
secondary classifiers, Logistic Regression shows a greater
ability to adapt to the fine-grained features of the glomeruli
images with high capacity to fit onto a small-sized, im-
mensely correlated dataset. On the other hand, the Incep-
tionResNetV?2 framework gives the most favorable results
compared to its corollaries followed by VGG19 as evident
by slight degradation in the metric values.

Table 8 details the performance of attention based
MGANet on RGD and RFD for various permutations of
scaled dot product. It can be directly observed that the
model outperforms both transfer learning as well as feature
extraction based supervised classification techniques by a
significant margin, substantiating our claim that localized
features present in medical histological images are more
prominent than universal pixel-level image features. Inter-
estingly, changing the relative order of attention maps used
for calculating the scaled dot product attention did not re-
port a convincing deviation in performance metrics. The
t-SNE plots of RGD and RFD datasets, as shown in Figure
7, support the argument that the inter-class heterogeneity
amongst class labels is low. The high overlap of clusters
point to the fact that the tissue level micro-structural differ-
ences amongst the constituent classes are subtle and require
intricate feature modeling for the classifiers to take them
into consideration. This justifies the claim and the related
observation that classification on image features extracted
through pre-trained transfer learning models perform bet-
ter than naive transfer learning. Further, the facilitation of
unsupervised localized attention through MGANet serves
a role similar to using handcrafted features. Thus, it can
be summed up that feature extraction using InceptionRes-
NetV2 model performs relatively better than baseline trans-
fer learning with ResNet50, while the MGANet surpasses
both the methods on both RGD and RFD.

Classifier Accuracy | Precision | Recall | F1

RGD (a1, a2, a3) | 87.25 75.91 87.99 | 87.17
RGD (a2, a3, 1) | 87.17 75.89 87.56 87.14
RGD (a3, a1, a2) | 87.08 75.88 87.49 87.09
RFD (a1, a2, a3) | 81.47 58.77 84.23 82.64
RFD (a2, a3,a1) | 8141 58.56 84.11 81.64
RFD (a3, a1, a2) | 81.38 58.48 84.15 82.79

Table 8: Results (in %) for MGANet

6. Error Analysis

A brief analysis is presented in this section highlighting
various limitations encountered while classifying RGD and
RFD images along with suggested improvements.

1. High variability in staining: In routine clinical prac-



tice, a kidney biopsy after processing is stained with
Hematoxylin and Eosin (HE), Periodic acid-Schiff
(PAS), Jones Methenamine Silver (JMS) and Masson
trichrome (MT) stain [13]. To render a comprehensive
clinical diagnosis all the stains are used in conjunction
and many more subtle features are interpreted besides
the ones mentioned above. Although each pathology
lab follows standardized practices in terms of chemi-
cal composition and procedure for tissue staining, still
there is a lot of variability in staining from lab to lab
and case to case basis. Figure 8 shows samples of
whole slide images and their corresponding ground
truth annotations misclassified by ResNet50, Incep-
tionResNetV2 based feature extraction and MGANet
respectively due to the same.
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(c) Abnormal

(a) Normal

Figure 8: Illustration of RGD images with true labels mis-
classified by (a )Resnet50 (b) InceptionResNetV2 based
feature extraction (c) MGANet

2. Low precision in RFD dataset image classification:
Although the ranking order of proposed methods is
consistent in case of both RGD and RFD, a promi-
nent exception of considerably low precision exists in
case of RFD. The primary cause for the same is the
problem of the presence of heterogeneous tissue-level
noise. This can be attributed to the fact that the biopsy
images constituting the RFD dataset are not devoid of
glomeruli segments, leading to erroneous classifica-
tion as evident from Figure 9 which exhibits images
consistently misclassified by the models. Currently,
our work does not deal with automatic segmentation
of glomeruli and will be addressed in the future.

(b) Moderate Fibrosis

(a) Mild Fibrosis

Figure 9: Given true labels, misclassified as severe

7. Conclusion and Future Work

Kidney health bio-markers can aid in pre-assessing the
progression of potentially fatal chronic kidney diseases, bet-
ter quantitative characterization of disease and precision
medicine. Challenges such as the absence of a reliable bio-
medical dataset of glomeruli images, challenges in biopsy

digitization, heterogeneity across entire patches of the tissue
section, color variations induced due to differences in slide
preparation and the existence of a deluge of deep learning
options for the image classification tasks require concen-
trated efforts in dataset acquisition, preparation and inves-
tigation of a computationally inexpensive technique while
ensuring medical trustworthiness at the same time. Most
medical datasets suffer from a peculiar gold standard para-
dox [1]. The experiments prove that vanilla transfer learn-
ing models fail to surpass feature-enriched linear classifi-
cation models owing to high interclass similarities. Devel-
opment of suitable fine-tuned algorithms that do not con-
verge to the set biases posed a challenging task that even-
tually abated the usage of widely popular transfer learn-
ing and pre-trained image feature extractors on highly sub-
jective medical datasets. In order to outperform the base-
line models, Multi-Gaze Attention Model (MGANet) was
introduced to replace the cumbersome feature extraction
with unsupervised multi-headed self-attention followed by
scaled dot product.

The current findings aim to establish a state of the art in
the novel area of renal histopathology. The RGD dataset can
be extended to include unreported categories of glomeruli
such as Sclerotic and Crescentic [5]. A potential advance-
ment in precision metrics for classification of fibrosis im-
ages can be the use of stacked convolutional auto-encoders
for hierarchical feature extraction as depicted in similar
domains [18]. Moreover, advanced neural architectures
such as bi-channel CNN-LSTM models [20] and C-LSTM’s
[26]. Wrapper-penalty based feature selection algorithms
can also be utilized for choosing the best possible set of
features suitable for efficient classification [28,29]. A po-
tential advancement can be the extension of this work by in-
corporating clinical parameters of users through multimodal
devices [31].
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