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ABSTRACT

Automatic detection of optic disk and fovea, the two funda-
mental biological landmarks of the retinal system, is crucial to
track the disease progression in a diabetic patient. Recent ad-
vances in this direction were mostly limited to applying CNN
based networks to aggressively extract visual geometric fea-
tures. In a departure from that practice, we put forward the no-
tion of treating the landmark detection problem in human eye
scans as a pose estimation problem owing to the anatomical
geometrical relationship between optic disk and fovea. In this
regard, we present Naive Single Stacked Hourglass (NSSH)
network which learns the spatial orientation and pixel inten-
sity contrast between optic disk and fovea to accurately pin-
point their locations. NSSH network significantly reduces the
mean squared loss, thus outperforming all previously known
techniques and establishing a state of the art in both optic disk
and fovea localization tasks.

Index Terms— Biomedical imaging, retina fundus im-
ages, key-point detection, pose estimation, hourglass net-
works

1. INTRODUCTION

Diabetic Retinopathy (DR) is the leading cause of visual im-
pairment in diabetic patients. Most cases pertaining to vision
loss can be detected in early stages using high resolution
retinal scans to spot morphological abnormalities. However,
such practices are time consuming and not scalable without
the presence of a highly experienced ophthalmologist. Often,
the retinal fundus images may be difficult to comprehend due
to presence of hemorrhages, hard exudates and non-uniform
illumination. When performing diagnostic measurements
on eye fundus images, the two key anatomical structures of
particular interest for specialists are - Optic Disk (OD) and
Fovea. Optic disk is a bright yellowish oval region that marks
the beginning of the optic nerve and entry point for major
blood vessels that supply the retina. Fovea is a small depres-
sion in the center of retina which is usually the darkest region
in a digital fundus image.

The fovea and the optic disk are the defining elements of
retina fundus coordinate systems and are essential to charac-
terize the spatial distribution of retinal features. The medical
significance of detecting the OD and fovea is that the closer

a haemorrhage is to any of them, the more likely is the per-
son to suffer from partial or complete blindness in the near
future. Recently, localization and pin-point detection of the
retinal landmarks have gained much popularity owing to the
proliferation in early disease prediction and treatment capa-
bilities. This work proposes a new approach to view the stan-
dard biomedical localization as a key-point detection prob-
lem where the optic disk and fovea are seen as landmarks in
static images. Consequently, inspired by advances in human
pose estimation techniques in the recent past, a CNN-based
Naive Single Stack Hourglass (NSSH) network is proposed to
accomplish the task of retinal key-point detection. The ex-
perimental results are computed on IDRiD Retinopathy Im-
age Dataset1, which is one of the most popular retinal scans
dataset, far better than its predecessors in terms of size and
quality. Moreover, our methodology gives state of the art per-
formance by significantly reducing the mean squared error in
OD and fovea detection as compared to any of the existing
techniques.

Fig. 1: Retinal scan with Optic Disk and Fovea marked [1]

2. CHALLENGES WITH PRIOR WORK

Most prior works were handicapped by one or more of the
following challenges that plagued retinal bio-medical imag-
ing either due to lack of requisite data or computational tech-
niques. Some of them are defined below:

• Dependence on auxiliary tasks: A number of previ-
ous approaches performed segmentation of optic disk
as a precursor to localization, similar to [2]. Hence,

1https://IDRid.grand-challenge.org/



building a robust segmentation pipeline became es-
sential for key-point localization in such cases. Our
method considers localization of retinal key-points
disjoint from segmentation, thereby overcoming the
performance bottleneck resulting from segmentation.

• Difficulty in generalization of visual features: [3] de-
veloped a mathematical morphology based nonlinear
image processing pipeline to localize fovea. [4, 5, 6]
employed edge detection, entropy filters, Hough trans-
forms, pyramidal decomposition and spatial geometric
distance for the same task. [7] showed how histogram
matching of pixel densities helped build a robust local-
izer for optic disc in retinal images. A major drawback
in such works is that they are not resilient to domain
adaptation and fail when tried on images from different
sources. Alternatively, our method extracts key-point
features in an unsupervised fashion at different scales.

• Asynchronous detection of OD and fovea [8] per-
formed independent detection of optic disk, while [9,
10] focused on fovea localization in isolation. Inde-
pendent landmark localization berefts the model from
utilizing the spatial information between the key-points
leading to poor performance. NSSH network does si-
multaneous key-point detection, extendable to newer
landmarks in the future.

• Lack of interpretability: [11] utilized a CNN-based
deep neural network to segment optic disk. [12] built
an ensemble based model that incorporated several in-
dependent visual features. [13] used a fully-connected
DenseNet architecture for segmentation of optic disk.
[14] utilized relation-networks to exploit the geometric
relationships between fovea and optic disk. Application
of such deep learning methods critically ignores the
explainability of learnable anatomical geometric rela-
tionships in medical key-points. Moreover, these mod-
els are difficult to train due to humongous number of
learnable parameters. Our method tries to employ a
minimalistic model with significantly lesser parameters
that outputs easily interpretable confidence heatmaps to
make the task of OD and fovea detection more transpar-
ent for medical practitioners.

3. METHODOLOGY

3.1. Problem Formulation

In this paper, we propose to view the task of retinal landmark
detection as a key-point estimation problem for localizing op-
tical disk and fovea in a diabetic retinopathy image . Given a
retinal scan image I , we define the optic disk and fovea points
by a set P = {pi, pj}, where the coordinate vectors pi and pj
represent the 2D location (x, y) in the image. Let the location
of each key point be parameterized by image position and ori-
entation [xi, yi, θi]. The spatial morphology of OD and fovea

can be described in terms of their geometric locality φ(pk)
and illumination intensity ρ(pk). Let the feature vectors ex-
tracted from the oriented key point patches at location pi and
pj be given by Equations 1 and 2.

~φ(pi, pj) = βi
T ~O(pi)− βjT ~O(pj) (1)

~ρ(pi, pj) = αi
T ~I(pi)− αj

T ~I(pj) (2)

where ~O(pi, pj) and ~I(pi, pj) represent the spatial orien-
tation and pixel intensity contrast vectors between OD and
fovea, respectively. αk and βk are the fine tuned parameters
learnt from the data to account for noise and illumination vari-
ations in the RGB channel. The output of the network is a set
of low resolution heatmaps where, for a given heatmap, the
network predicts the probability of occurrence of either op-
tic disk or fovea given the other’s presence at each and every
pixel. Contradicting evidence and anatomic impossibility are
implicitly learnt at different scale resolutions by maintaining
precise local information while considering and then recon-
sidering the overall coherence of the features. A landmark-
estimation function is defined to take in the input image and
learn the spatial orientation and pixel intensity contrast to dis-
tinctively mark the fovea and OD points as given by Equation
3 and 4 respectively. The landmark estimator algorithm relies
on heatmap regression to output the likelihood of expected
key-point at each pixel location (Hk

2D), where Ø is the space
of all possible pixel locations, σ controls the standard devia-
tion of the heatmaps, E is the joint expectation of OD and
fovea locations and gk denotes the ground truth annotation of
the landmarks.

Hi
2D(pi) = E(−||p− gi||

σ2
)∀p ∈ Ø− pj (3)

Hj
2D(pj) = E(−||p− gj ||

σ2
)∀p ∈ Ø− pi (4)

3.2. Naive Single Stack Hourglass Network

Inspired by [15], we propose the Naive Single Stack Hour-
glass Network (NSSH) which incorporates three salient de-
sign decisions. Hourglass Geometry: The first-half of the
NSSH network acts as an encoder which is performs coarse
feature extraction. The second half is supposed as a decoder
consisting of deconvolutional layers stacked to recover the
fine-grained details of the input from the decoder outputs.
The proposed network has an upsampling layer for each
corresponding pooling layer, thus following an hourglass
geometry. Convolutional Layer Stacking: Stacking convo-
lution layers followed by repeated pooling and upsampling
at each resolution is known to preserve spatial information
across scales. NHHS has a single stack structure for opti-
mal performance. Addition of more stacked blocks led to
degraded performance. Replacing ResNet blocks with FC-
ConvNets: Traditionally, deep ResNet blocks are used in



stacked hourglass networks to provide residual learning ef-
fect. However, upon empirical analysis, such deeper residual
layers did not significantly improve performance in our case.
Rather, the ResNet blocks increased the model training time,
number of trainable parameters and the model’s tendency to
overfit. Hence, a conscious design choice was to replace the
residual blocks with simple fully-connected convolutional
layers that helped to capture a larger spatial context. The unit
convolutional blocks are added at the end to perform heatmap
regression as discussed in Section 3.1.

Naive Single Stack Hourglass Network has four down-
sampling and upsampling steps. All convolutional layers in
downsampling and upsampling steps have filter size of 3 x
3. At each max pooling step, the network branches off and
applies more convolutions at the original pre-pooled resolu-
tion. After reaching the lowest resolution, the network begins
the top-down sequence of upsampling and combines features
across scales. The 2 x 2 max pooling is used to halve the size
of the feature maps, and the nearest neighbor interpolation is
used to double the size of the feature maps in the upsampling
steps. The maximum feature maps in convolutional layers are
fixed to 256 after trying several versions of the model with
64, 128, 256, 512 and 1024 feature maps. After the last up-
sampling layer, a single 3 x 3 convolution and two 1 x 1 con-
volution is performed to generate network outputs. Lastly, a
1 x 1 convolution is applied to the outputs to match the num-
ber of input feature maps to the number of channels. This
is followed by another 1 x 1 convolution for output heatmap
generation.

3.3. Loss Function

For training the key-point estimation function, we use Mean
Squared Error (MSE) based loss function taking into account
both optic disk and fovea landmarks. Let Mk

2D represent the
predicted 2D Gaussian confidence map for each kth annota-
tions. Thus, the confidence maps Mi

2D and Mj
2D for optic

disk and fovea respectively as given by Equation 5 and 6.

Mi
2D(pi) =

1

2πν
exp(

−[(< ~p− ~pi, ~x >)2 + (< ~p− ~pi, ~x >)2]

2ν
)

(5)

Mj
2D(pj) =

1

2πν
exp(

−[(< ~p− ~pj , ~y >)2 + (< ~p− ~pj , ~y >)2]

2ν
)

(6)
where ν denotes square of spatial variance, and < ~u,~v >

indicates the inner product of vectors ~u and ~v. The MSE loss
is then formulated as given by Equation 7, with Hk

2D(pk)
as the ground truth confidence map and Mk

2D(pk) and pre-
dicted confidence map.

L =
1

2
(γ||Hi

2D −Mi
2D||22 + (1− γ)||Hj

2D −Mj
2D||22)

(7)

We use SGD with RMSProp as the optimizer for the NSSH
model by back-propagating the mean squared errors on train-
ing data through batch normalization.γ is a hyperparameter
to adjust the weights corresponding to the loss of each land-
mark. Through cross validation, it was observed that keeping
equal weightage for optic disk and fovea loses gives the most
optimal loss convergence.

Method
Euclidean Distance Error
Optic Disk Fovea

ISBI - 2018 Challenge (Rank 1)2 25.61 45.89
ResNet-18 80.48 115.12
ResNet-50 60.32 95.45

Relation Network Regressor [14] 26.12 43.46
NSSH Network (proposed) 14.21 35.45

Table 1: Results of NSSH network and baselines

4. EXPERIMENTATION SETTINGS

4.1. Dataset

The dataset used for experimentation is the Indian Diabetic
Retinopathy Image Dataset (IDRiD) [16]. The database con-
sists of 516 images with center pixel locations of optic disc
and fovea. It is divided into train, validation and test set of
383 (75%), 30 (5%) and 103 (20%) respectively. The dataset
was distributed as a part of ”Diabetic Retinopathy: Segmenta-
tion and Grading Challenge” workshop at organized at ISBI-
2018. The input image size is 4288 x 2848 which was resized
to 1024 x 1024. To avoid overfitting and improve genereliza-
tion, data augmentation of flips and rotations was applied fol-
lowed by color normalization for standardizing illumination
across images. The augmentation regime was kept minimal
to avoid inadvertent distortions in natural anatomical geomet-
rical relationships between optic disk and fovea.

4.2. Network Training

The Naive Single Stack Hourglass Network was trained on
Pytorch using RMSProp optimizer for optimal model con-
vergence. The GPU used for running the experiments was
NVIDIA 2080Ti, with batch size 4 and training time of 14
hours on average. The learning rate was kept at 25 x 10−5 for
100 epochs.

5. RESULTS AND DISCUSSIONS

Figure 2 highlights several test examples predicted by NSSH
network. ( ) depicts the ground truth landmarks while ( )
demarcates the predicted key-points. The detection of op-
tic disk and fovea was evaluated through mean Euclidean
distance metric which is given by 1

M

∑i=1
M (xpredicted −

xgroundtruth)2 + (ypredicted−ygroundtruth)2. Table 1 shows
the comparison of our proposed networks with baseline



Fig. 2: Ground truth (green) and predicted (red) key points of Optic Disk and Fovea detected by NSSH network.

Method
Euclidean Distance Error

# of Parameters (in millions) Training Time (hr)
Optic Disk Fovea

Naive single Stacked Hourglass Network 14.21 35.45 3.58 14
Naive Double Stacked Hourglass Network 15.10 44.69 6.72 20

ResNet-50 Single Stacked Hourglass Network 15.05 318.10 34.0 36

Table 2: Ablation analysis of stacking and layering structures

(a) Single Stacked Hourglas (b) Double Stacked Hourglass

Fig. 3: Training statistics for Naive Single and Double
Stacked Hourglass Networks

ResNet models and state of the art systems [14]. NSSH
network outperforms the Relation Network Regressor put
forth by [14] by a reduction of 45.6% and 18.4% in euclidean
distance error for OD and fovea detection, respectively. Thus,
it has been established that approaching retinal landmark de-
tection from a pose estimation perspective substantially out-
weighs all previous strategies experimented in this domain.
Moreover, we present an ablative analysis to understand the
design choices in NSSH network. Table 2 shows variants of
the proposed NSSH framework. In one of the variations, two
stacked modules were used to study the impact of increasing

stacking on model performance. It was observed that this led
to a decrease in MSE for both optic disk and fovea. A plausi-
ble reason can be the rise in number of model parameters that
tend to overfit sooner which took more time to train. This is
evident from Figure 3 where the single and double stacked
architectures perform identically, except that the former con-
verges faster. Alternatively, the original ResNet version of
proposed network was tried as given by [15]. This model was
10 times as bulky as the NSSH network, took 1.5 times more
time to train and still performed poorly on fovea detection.
Interestingly, it was found that OD detection is compara-
tively easier for all versions of hourglass models, while fovea
detection emerges as a non-trivial task.

6. CONCLUSION

This work summarizes the proposed Naive Single Stacked
Hourglass network as an excellent advancement for the de-
tection of the optic disc and fovea in retinal fundus images.
We demonstrate that the pose estimation algorithms can be
reformulated to locate key-points in biomedical images, with
promising improvements in performance metrics. Moreover,
the stacked hourglass model is robust to scale and illumina-
tion distortions, faster to train and more interpretable due to
its ability to learn hierarchies of features at different scales. In
future, the same architecture can be utilized in other challeng-
ing biomedical imaging tasks to develop clinical applications.
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